Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Alternative Perspective on the Robust Poisson Method for Estimating Risk or Prevalence Ratios (2112.00547v3)

Published 1 Dec 2021 in stat.ME

Abstract: The robust Poisson method is becoming increasingly popular when estimating the association of exposures with a binary outcome. Unlike the logistic regression model, the robust Poisson method yields results that can be interpreted as risk or prevalence ratios. In addition, it does not suffer from frequent non-convergence problems like the most common implementations of maximum likelihood estimators of the log-binomial model. However, using a Poisson distribution to model a binary outcome may seem counterintuitive. Methodological papers have often presented this as a good approximation to the more natural binomial distribution. In this paper, we provide an alternative perspective to the robust Poisson method based on the semiparametric theory. This perspective highlights that the robust Poisson method does not require assuming a Poisson distribution for the outcome. In fact, the method only assumes a log-linear relationship between the risk/prevalence of the outcome and the explanatory variables. This assumption and consequences of its violation are discussed. Suggestions to reduce the risk of violating the modeling assumption are also provided. Additionally, we discuss and contrast the robust Poisson method with other approaches for estimating exposure risk or prevalence ratios.

Summary

We haven't generated a summary for this paper yet.