Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Transformer Features for Image Quality Assessment (2112.00485v2)

Published 1 Dec 2021 in cs.CV and eess.IV

Abstract: Objective image quality evaluation is a challenging task, which aims to measure the quality of a given image automatically. According to the availability of the reference images, there are Full-Reference and No-Reference IQA tasks, respectively. Most deep learning approaches use regression from deep features extracted by Convolutional Neural Networks. For the FR task, another option is conducting a statistical comparison on deep features. For all these methods, non-local information is usually neglected. In addition, the relationship between FR and NR tasks is less explored. Motivated by the recent success of transformers in modeling contextual information, we propose a unified IQA framework that utilizes CNN backbone and transformer encoder to extract features. The proposed framework is compatible with both FR and NR modes and allows for a joint training scheme. Evaluation experiments on three standard IQA datasets, i.e., LIVE, CSIQ and TID2013, and KONIQ-10K, show that our proposed model can achieve state-of-the-art FR performance. In addition, comparable NR performance is achieved in extensive experiments, and the results show that the NR performance can be leveraged by the joint training scheme.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Chao Zeng (24 papers)
  2. Sam Kwong (104 papers)
Citations (3)