Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The anti-Fermi-Pasta-Ulam-Tsingou problem in one-dimensional diatomic lattices (2112.00461v2)

Published 1 Dec 2021 in cond-mat.stat-mech

Abstract: We study the thermalization dynamics of one-dimensional diatomic lattices (which represents the simplest system possessing multi-branch phonons), exemplified by the famous Fermi-Pasta-Ulam-Tsingou (FPUT)-$\beta$ and the Toda models. Here we focus on how the system relaxes to the equilibrium state when part of highest-frequency optical modes are initially excited, which is called the anti-FPUT problem comparing with the original FPUT problem (low frequency excitations of the monatomic lattice). It is shown numerically that the final thermalization time $T_{\rm eq}$ of the diatomic FPUT-$\beta$ chain depends on whether its acoustic modes are thermalized, whereas the $T_{\rm eq}$ of the diatomic Toda chain depends on the optical ones; in addition, the metastable state of both models have different energy distributions and lifetimes. Despite these differences, in the near-integrable region, the $T_{\rm eq}$ of both models still follows the same scaling law, i.e., $T_{\rm eq}$ is inversely proportional to the square of the perturbation strength. Finally, comparisons of the thermalization behavior between different models under various initial conditions are briefly summarized.

Summary

We haven't generated a summary for this paper yet.