Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unconditional well-posedness and IMEX improvement of a family of predictor-corrector methods in micromagnetics (2112.00451v1)

Published 1 Dec 2021 in math.NA and cs.NA

Abstract: Recently, Kim & Wilkening (Convergence of a mass-lumped finite element method for the Landau-Lifshitz equation, Quart. Appl. Math., 76, 383-405, 2018) proposed two novel predictor-corrector methods for the Landau-Lifshitz-Gilbert equation (LLG) in micromagnetics, which models the dynamics of the magnetization in ferromagnetic materials. Both integrators are based on the so-called Landau-Lifshitz form of LLG, use mass-lumped variational formulations discretized by first-order finite elements, and only require the solution of linear systems, despite the nonlinearity of LLG. The first(-order in time) method combines a linear update with an explicit projection of an intermediate approximation onto the unit sphere in order to fulfill the LLG-inherent unit-length constraint at the discrete level. In the second(-order in time) integrator, the projection step is replaced by a linear constraint-preserving variational formulation. In this paper, we extend the analysis of the integrators by proving unconditional well-posedness and by establishing a close connection of the methods with other approaches available in the literature. Moreover, the new analysis also provides a well-posed integrator for the Schr\"odinger map equation (which is the limit case of LLG for vanishing damping). Finally, we design an implicit-explicit strategy for the treatment of the lower-order field contributions, which significantly reduces the computational cost of the schemes, while preserving their theoretical properties.

Citations (4)

Summary

We haven't generated a summary for this paper yet.