Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Predicting Poverty Level from Satellite Imagery using Deep Neural Networks (2112.00011v1)

Published 30 Nov 2021 in cs.CV and eess.IV

Abstract: Determining the poverty levels of various regions throughout the world is crucial in identifying interventions for poverty reduction initiatives and directing resources fairly. However, reliable data on global economic livelihoods is hard to come by, especially for areas in the developing world, hampering efforts to both deploy services and monitor/evaluate progress. This is largely due to the fact that this data is obtained from traditional door-to-door surveys, which are time consuming and expensive. Overhead satellite imagery contain characteristics that make it possible to estimate the region's poverty level. In this work, I develop deep learning computer vision methods that can predict a region's poverty level from an overhead satellite image. I experiment with both daytime and nighttime imagery. Furthermore, because data limitations are often the barrier to entry in poverty prediction from satellite imagery, I explore the impact that data quantity and data augmentation have on the representational power and overall accuracy of the networks. Lastly, to evaluate the robustness of the networks, I evaluate them on data from continents that were absent in the development set.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Varun Chitturi (1 paper)
  2. Zaid Nabulsi (7 papers)
Citations (4)

Summary

We haven't generated a summary for this paper yet.