Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bayesian Level Set Approach for Inverse Problems with Piecewise Constant Reconstructions (2111.15620v1)

Published 30 Nov 2021 in math.NA and cs.NA

Abstract: There are several challenges associated with inverse problems in which we seek to reconstruct a piecewise constant field, and which we model using multiple level sets. Adopting a Bayesian viewpoint, we impose prior distributions on both the level set functions that determine the piecewise constant regions as well as the parameters that determine their magnitudes. We develop a Gauss-Newton approach with a backtracking line search to efficiently compute the maximum a priori (MAP) estimate as a solution to the inverse problem. We use the Gauss-Newton Laplace approximation to construct a Gaussian approximation of the posterior distribution and use preconditioned Krylov subspace methods to sample from the resulting approximation. To visualize the uncertainty associated with the parameter reconstructions we compute the approximate posterior variance using a matrix-free Monte Carlo diagonal estimator, which we develop in this paper. We will demonstrate the benefits of our approach and solvers on synthetic test problems (photoacoustic and hydraulic tomography, respectively a linear and nonlinear inverse problem) as well as an application to X-ray imaging with real data.

Citations (6)

Summary

We haven't generated a summary for this paper yet.