Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Second-order Approximation of Minimum Discrimination Information in Independent Component Analysis (2111.15060v1)

Published 30 Nov 2021 in stat.ML, cs.LG, and eess.SP

Abstract: Independent Component Analysis (ICA) is intended to recover the mutually independent sources from their linear mixtures, and F astICA is one of the most successful ICA algorithms. Although it seems reasonable to improve the performance of F astICA by introducing more nonlinear functions to the negentropy estimation, the original fixed-point method (approximate Newton method) in F astICA degenerates under this circumstance. To alleviate this problem, we propose a novel method based on the second-order approximation of minimum discrimination information (MDI). The joint maximization in our method is consisted of minimizing single weighted least squares and seeking unmixing matrix by the fixed-point method. Experimental results validate its efficiency compared with other popular ICA algorithms.

Citations (2)

Summary

We haven't generated a summary for this paper yet.