Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Machine Learning for Real-Time, Automatic, and Early Diagnosis of Parkinson's Disease by Extracting Signs of Micrographia from Handwriting Images (2111.14781v1)

Published 24 Nov 2021 in cs.LG, cs.AI, and eess.IV

Abstract: Parkinson's disease (PD) is debilitating, progressive, and clinically marked by motor symptoms. As the second most common neurodegenerative disease in the world, it affects over 10 million lives globally. Existing diagnoses methods have limitations, such as the expense of visiting doctors and the challenge of automated early detection, considering that behavioral differences in patients and healthy individuals are often indistinguishable in the early stages. However, micrographia, a handwriting disorder that leads to abnormally small handwriting, tremors, dystonia, and slow movement in the hands and fingers, is commonly observed in the early stages of PD. In this work, we apply machine learning techniques to extract signs of micrographia from drawing samples gathered from two open-source datasets and achieve a predictive accuracy of 94%. This work also sets the foundations for a publicly available and user-friendly web portal that anyone with access to a pen, printer, and phone can use for early PD detection.

Summary

We haven't generated a summary for this paper yet.