A Simple Long-Tailed Recognition Baseline via Vision-Language Model (2111.14745v1)
Abstract: The visual world naturally exhibits a long-tailed distribution of open classes, which poses great challenges to modern visual systems. Existing approaches either perform class re-balancing strategies or directly improve network modules to address the problem. However, they still train models with a finite set of predefined labels, limiting their supervision information and restricting their transferability to novel instances. Recent advances in large-scale contrastive visual-language pretraining shed light on a new pathway for visual recognition. With open-vocabulary supervisions, pretrained contrastive vision-LLMs learn powerful multimodal representations that are promising to handle data deficiency and unseen concepts. By calculating the semantic similarity between visual and text inputs, visual recognition is converted to a vision-language matching problem. Inspired by this, we propose BALLAD to leverage contrastive vision-LLMs for long-tailed recognition. We first continue pretraining the vision-language backbone through contrastive learning on a specific long-tailed target dataset. Afterward, we freeze the backbone and further employ an additional adapter layer to enhance the representations of tail classes on balanced training samples built with re-sampling strategies. Extensive experiments have been conducted on three popular long-tailed recognition benchmarks. As a result, our simple and effective approach sets the new state-of-the-art performances and outperforms competitive baselines with a large margin. Code is released at https://github.com/gaopengcuhk/BALLAD.
- Teli Ma (22 papers)
- Shijie Geng (33 papers)
- Mengmeng Wang (73 papers)
- Jing Shao (109 papers)
- Jiasen Lu (32 papers)
- Hongsheng Li (340 papers)
- Peng Gao (401 papers)
- Yu Qiao (563 papers)