Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Context-Aware Embedding for Person Search (2111.14316v1)

Published 29 Nov 2021 in cs.CV

Abstract: Person Search is a relevant task that aims to jointly solve Person Detection and Person Re-identification(re-ID). Though most previous methods focus on learning robust individual features for retrieval, it's still hard to distinguish confusing persons because of illumination, large pose variance, and occlusion. Contextual information is practically available in person search task which benefits searching in terms of reducing confusion. To this end, we present a novel contextual feature head named Attention Context-Aware Embedding(ACAE) which enhances contextual information. ACAE repeatedly reviews the person features within and across images to find similar pedestrian patterns, allowing it to implicitly learn to find possible co-travelers and efficiently model contextual relevant instances' relations. Moreover, we propose Image Memory Bank to improve the training efficiency. Experimentally, ACAE shows extensive promotion when built on different one-step methods. Our overall methods achieve state-of-the-art results compared with previous one-step methods.

Citations (2)

Summary

We haven't generated a summary for this paper yet.