Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Lower Bounds of Approximating Parameterized $k$-Clique (2111.14033v3)

Published 28 Nov 2021 in cs.CC

Abstract: Given a simple graph $G$ and an integer $k$, the goal of $k$-Clique problem is to decide if $G$ contains a complete subgraph of size $k$. We say an algorithm approximates $k$-Clique within a factor $g(k)$ if it can find a clique of size at least $k / g(k)$ when $G$ is guaranteed to have a $k$-clique. Recently, it was shown that approximating $k$-Clique within a constant factor is W[1]-hard [Lin21]. We study the approximation of $k$-Clique under the Exponential Time Hypothesis (ETH). The reduction of [Lin21] already implies an $n{\Omega(\sqrt[6]{\log k})}$-time lower bound under ETH. We improve this lower bound to $n{\Omega(\log k)}$. Using the gap-amplification technique by expander graphs, we also prove that there is no $k{o(1)}$ factor FPT-approximation algorithm for $k$-Clique under ETH. We also suggest a new way to prove the Parameterized Inapproximability Hypothesis (PIH) under ETH. We show that if there is no $n{O(\frac{k}{\log k})}$ algorithm to approximate $k$-Clique within a constant factor, then PIH is true.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Bingkai Lin (15 papers)
  2. Xuandi Ren (9 papers)
  3. Yican Sun (10 papers)
  4. Xiuhan Wang (3 papers)
Citations (14)

Summary

We haven't generated a summary for this paper yet.