Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Local Edge Dynamics and Opinion Polarization (2111.14020v2)

Published 28 Nov 2021 in cs.SI and cs.CY

Abstract: The proliferation of social media platforms, recommender systems, and their joint societal impacts have prompted significant interest in opinion formation and evolution within social networks. We study how local edge dynamics can drive opinion polarization. In particular, we introduce a variant of the classic Friedkin-Johnsen opinion dynamics, augmented with a simple time-evolving network model. Edges are iteratively added or deleted according to simple rules, modeling decisions based on individual preferences and network recommendations. Via simulations on synthetic and real-world graphs, we find that the combined presence of two dynamics gives rise to high polarization: 1) confirmation bias -- i.e., the preference for nodes to connect to other nodes with similar expressed opinions and 2) friend-of-friend link recommendations, which encourage new connections between closely connected nodes. We show that our model is tractable to theoretical analysis, which helps explain how these local dynamics erode connectivity across opinion groups, affecting polarization and a related measure of disagreement across edges. Finally, we validate our model against real-world data, showing that our edge dynamics drive the structure of arbitrary graphs, including random graphs, to more closely resemble real social networks.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Nikita Bhalla (4 papers)
  2. Adam Lechowicz (14 papers)
  3. Cameron Musco (82 papers)
Citations (9)

Summary

We haven't generated a summary for this paper yet.