Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Topology optimization of stiff structures under self-weight for given volume using a smooth Heaviside function (2111.13875v3)

Published 27 Nov 2021 in cs.CE

Abstract: This paper presents a density-based topology optimization approach to design structures under self-weight load. Such loads change their magnitude and/or location as the topology optimization advances and pose several unique challenges, e.g., non-monotonous behavior of compliance objective, parasitic effects of the low-stiffness elements, and unconstrained nature of the problems. The modified SIMP material scheme is employed with the three-field density representation technique (original, filtered, and projected design fields) to achieve optimized solutions~close~to~0-1. A novel mass density interpolation strategy is proposed using a smooth Heaviside function, which provides a continuous transition between solid and void states of elements and facilitates tuning of the non-monotonous behavior of the objective. A constraint that implicitly imposes a lower bound on the permitted volume is conceptualized using the maximum permitted mass and the current mass of the evolving design. Sensitivities of the objective and self-weight are evaluated using the adjoint-variable method. Compliance of the domain is minimized to achieve the optimized designs using the Method of Moving Asymptotes. The Efficacy and robustness of the presented approach are demonstrated by designing various 2D and 3D structures involving self-weight. The proposed approach maintains the constrained nature of the optimization problems and provides smooth and rapid objective convergence.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Prabhat Kumar (46 papers)
Citations (22)

Summary

We haven't generated a summary for this paper yet.