Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive Perturbation for Adversarial Attack (2111.13841v3)

Published 27 Nov 2021 in cs.CV

Abstract: In recent years, the security of deep learning models achieves more and more attentions with the rapid development of neural networks, which are vulnerable to adversarial examples. Almost all existing gradient-based attack methods use the sign function in the generation to meet the requirement of perturbation budget on $L_\infty$ norm. However, we find that the sign function may be improper for generating adversarial examples since it modifies the exact gradient direction. Instead of using the sign function, we propose to directly utilize the exact gradient direction with a scaling factor for generating adversarial perturbations, which improves the attack success rates of adversarial examples even with fewer perturbations. At the same time, we also theoretically prove that this method can achieve better black-box transferability. Moreover, considering that the best scaling factor varies across different images, we propose an adaptive scaling factor generator to seek an appropriate scaling factor for each image, which avoids the computational cost for manually searching the scaling factor. Our method can be integrated with almost all existing gradient-based attack methods to further improve their attack success rates. Extensive experiments on the CIFAR10 and ImageNet datasets show that our method exhibits higher transferability and outperforms the state-of-the-art methods.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (60)
  1. C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. J. Goodfellow, and R. Fergus, “Intriguing properties of neural networks,” in ICLR, 2014.
  2. C. Xiao, B. Li, J. Zhu, W. He, M. Liu, and D. Song, “Generating adversarial examples with adversarial networks,” in IJCAI, 2018, pp. 3905–3911.
  3. Z. Zhao, D. Dua, and S. Singh, “Generating natural adversarial examples,” in ICLR, 2018.
  4. Y. Song, R. Shu, N. Kushman, and S. Ermon, “Constructing unrestricted adversarial examples with generative models,” in NeurIPS, 2018, pp. 8322–8333.
  5. A. Joshi, A. Mukherjee, S. Sarkar, and C. Hegde, “Semantic adversarial attacks: Parametric transformations that fool deep classifiers,” in ICCV, 2019, pp. 4772–4782.
  6. H. Qiu, C. Xiao, L. Yang, X. Yan, H. Lee, and B. Li, “Semanticadv: Generating adversarial examples via attribute-conditioned image editing,” in ECCV, 2020, pp. 19–37.
  7. Z. Xiao, X. Gao, C. Fu, Y. Dong, W. Gao, X. Zhang, J. Zhou, and J. Zhu, “Improving transferability of adversarial patches on face recognition with generative models,” 2021, pp. 11 845–11 854.
  8. I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial examples,” in ICLR, 2015.
  9. A. Kurakin, I. J. Goodfellow, and S. Bengio, “Adversarial machine learning at scale,” in ICLR, 2017.
  10. A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards deep learning models resistant to adversarial attacks,” in ICLR, 2018.
  11. Y. Dong, F. Liao, T. Pang, H. Su, J. Zhu, X. Hu, and J. Li, “Boosting adversarial attacks with momentum,” in CVPR, 2018, pp. 9185–9193.
  12. C. Xie, Z. Zhang, Y. Zhou, S. Bai, J. Wang, Z. Ren, and A. L. Yuille, “Improving transferability of adversarial examples with input diversity,” in CVPR, 2019, pp. 2730–2739.
  13. Y. Dong, T. Pang, H. Su, and J. Zhu, “Evading defenses to transferable adversarial examples by translation-invariant attacks,” in CVPR, 2019, pp. 4312–4321.
  14. J. Lin, C. Song, K. He, L. Wang, and J. E. Hopcroft, “Nesterov accelerated gradient and scale invariance for adversarial attacks,” in ICLR, 2020.
  15. X. Wang, J. Ren, S. Lin, X. Zhu, Y. Wang, and Q. Zhang, “A unified approach to interpreting and boosting adversarial transferability,” in ICLR, 2021.
  16. Y. Nesterov, “A method for unconstrained convex minimization problem with the rate of convergence o⁢(1/k2)𝑜1superscript𝑘2o(1/k^{2})italic_o ( 1 / italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ),” 1983.
  17. D. Wu, Y. Wang, S. Xia, J. Bailey, and X. Ma, “Skip connections matter: On the transferability of adversarial examples generated with resnets,” in ICLR, 2020.
  18. X. Wang and K. He, “Enhancing the transferability of adversarial attacks through variance tuning,” in CVPR, 2021, pp. 1924–1933.
  19. X. Wang, J. Lin, H. Hu, J. Wang, and K. He, “Boosting adversarial transferability through enhanced momentum,” arXiv preprint arXiv:2103.10609, 2021.
  20. J. Zou, Z. Pan, J. Qiu, Y. Duan, X. Liu, and Y. Pan, “Making adversarial examples more transferable and indistinguishable,” arXiv preprint arXiv:2007.03838, 2020.
  21. F. Tramèr, A. Kurakin, N. Papernot, I. J. Goodfellow, D. Boneh, and P. D. McDaniel, “Ensemble adversarial training: Attacks and defenses,” in ICLR, 2018.
  22. C. Song, K. He, J. Lin, L. Wang, and J. E. Hopcroft, “Robust local features for improving the generalization of adversarial training,” in ICLR, 2020.
  23. T. Pang, X. Yang, Y. Dong, T. Xu, J. Zhu, and H. Su, “Boosting adversarial training with hypersphere embedding,” in NeurIPS, 2020.
  24. E. Wong, L. Rice, and J. Z. Kolter, “Fast is better than free: Revisiting adversarial training,” in ICLR, 2020.
  25. G. K. Dziugaite, Z. Ghahramani, and D. M. Roy, “A study of the effect of jpg compression on adversarial images,” arXiv preprint arXiv:1608.00853, 2016.
  26. F. Liao, M. Liang, Y. Dong, T. Pang, X. Hu, and J. Zhu, “Defense against adversarial attacks using high-level representation guided denoiser,” in CVPR, 2018, pp. 1778–1787.
  27. P. Samangouei, M. Kabkab, and R. Chellappa, “Defense-gan: Protecting classifiers against adversarial attacks using generative models,” in ICLR, 2018.
  28. Z. Liu, Q. Liu, T. Liu, N. Xu, X. Lin, Y. Wang, and W. Wen, “Feature distillation: Dnn-oriented JPEG compression against adversarial examples,” in CVPR, 2019, pp. 860–868.
  29. X. Jia, X. Wei, X. Cao, and H. Foroosh, “Comdefend: An efficient image compression model to defend adversarial examples,” in CVPR, 2019, pp. 6084–6092.
  30. X. Liu, M. Cheng, H. Zhang, and C. Hsieh, “Towards robust neural networks via random self-ensemble,” in ECCV, 2018, pp. 369–385.
  31. T. Pang, K. Xu, C. Du, N. Chen, and J. Zhu, “Improving adversarial robustness via promoting ensemble diversity,” in ICML, 2019, pp. 4970–4979.
  32. H. Yang, J. Zhang, H. Dong, N. Inkawhich, A. Gardner, A. Touchet, W. Wilkes, H. Berry, and H. Li, “DVERGE: diversifying vulnerabilities for enhanced robust generation of ensembles,” in NeurIPS, 2020.
  33. A. Raghunathan, J. Steinhardt, and P. Liang, “Certified defenses against adversarial examples,” in ICLR, 2018.
  34. E. Wong, F. R. Schmidt, J. H. Metzen, and J. Z. Kolter, “Scaling provable adversarial defenses,” in NeurIPS, 2018, pp. 8400–8409.
  35. J. M. Cohen, E. Rosenfeld, and J. Z. Kolter, “Certified adversarial robustness via randomized smoothing,” in ICML, 2019, pp. 1310–1320.
  36. J. Jia, X. Cao, B. Wang, and N. Z. Gong, “Certified robustness for top-k predictions against adversarial perturbations via randomized smoothing,” in ICLR, 2020.
  37. M. Grabisch and M. Roubens, “An axiomatic approach to the concept of interaction among players in cooperative games,” Int. J. Game Theory, vol. 28, no. 4, pp. 547–565, 1999.
  38. O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. S. Bernstein, A. C. Berg, and L. Fei-Fei, “Imagenet large scale visual recognition challenge,” IJCV, vol. 115, no. 3, pp. 211–252, 2015.
  39. A. Krizhevsky, “Learning multiple layers of features from tiny images,” 2009.
  40. I. Radosavovic, R. P. Kosaraju, R. B. Girshick, K. He, and P. Dollár, “Designing network design spaces,” in CVPR, 2020, pp. 10 428–10 436.
  41. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in CVPR, 2016, pp. 770–778.
  42. J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in CVPR, 2018, pp. 7132–7141.
  43. G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, “Densely connected convolutional networks,” in CVPR, 2017, pp. 4700–4708.
  44. S. Zagoruyko and N. Komodakis, “Wide residual networks,” arXiv preprint arXiv:1605.07146, 2016.
  45. Y. Chen, J. Li, H. Xiao, X. Jin, S. Yan, and J. Feng, “Dual path networks,” in NeurIPS, 2017, pp. 4467–4475.
  46. D. Han, J. Kim, and J. Kim, “Deep pyramidal residual networks,” in CVPR, 2017, pp. 5927–5935.
  47. X. Gastaldi, “Shake-shake regularization,” arXiv preprint arXiv:1705.07485, 2017.
  48. C. Xiao, P. Zhong, and C. Zheng, “Enhancing adversarial defense by k-winners-take-all,” in ICLR, 2020.
  49. K. Roth, Y. Kilcher, and T. Hofmann, “The odds are odd: A statistical test for detecting adversarial examples,” in ICML, 2019, pp. 5498–5507.
  50. Y. Li, J. Bradshaw, and Y. Sharma, “Are generative classifiers more robust to adversarial attacks?” in ICML.   PMLR, 2019, pp. 3804–3814.
  51. C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4, inception-resnet and the impact of residual connections on learning,” in AAAI, 2017, pp. 4278–4284.
  52. C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the inception architecture for computer vision,” in CVPR, 2016, pp. 2818–2826.
  53. K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in deep residual networks,” in ECCV, 2016, pp. 630–645.
  54. M. Sandler, A. G. Howard, M. Zhu, A. Zhmoginov, and L. Chen, “Mobilenetv2: Inverted residuals and linear bottlenecks,” in CVPR, 2018, pp. 4510–4520.
  55. C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L. Li, L. Fei-Fei, A. L. Yuille, J. Huang, and K. Murphy, “Progressive neural architecture search,” in ECCV, 2018, pp. 19–34.
  56. B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transferable architectures for scalable image recognition,” in CVPR, 2018, pp. 8697–8710.
  57. C. Xie, J. Wang, Z. Zhang, Z. Ren, and A. L. Yuille, “Mitigating adversarial effects through randomization,” in ICLR, 2018.
  58. W. Xu, D. Evans, and Y. Qi, “Feature squeezing: Detecting adversarial examples in deep neural networks,” in NDSS, 2018.
  59. C. Guo, M. Rana, M. Cissé, and L. van der Maaten, “Countering adversarial images using input transformations,” in ICLR, 2018.
  60. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in ICLR, 2015.
Citations (2)

Summary

We haven't generated a summary for this paper yet.