Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On a Stochastic Fundamental Lemma and Its Use for Data-Driven Optimal Control (2111.13636v5)

Published 26 Nov 2021 in eess.SY, cs.SY, and math.OC

Abstract: Data-driven control based on the fundamental lemma by Willems et al. is frequently considered for deterministic LTI systems subject to measurement noise. However, besides measurement noise, stochastic disturbances might also directly affect the dynamics. In this paper, we leverage Polynomial Chaos Expansions (PCE) to extend the deterministic fundamental lemma towards stochastic systems. This extension allows to predict future statistical distributions of the inputs and outputs for stochastic LTI systems in data-driven fashion, i.e., based on the knowledge of previously recorded input-output-disturbance data and of the disturbance distribution we perform data-driven uncertainty propagation. Finally, we analyze data-driven stochastic optimal control problems and we propose a conceptual framework for data-driven stochastic predictive control. Numerical examples illustrate the efficacy of the proposed concepts.

Citations (41)

Summary

We haven't generated a summary for this paper yet.