Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Evaluating importance of nodes in complex networks with local volume information dimension (2111.13585v2)

Published 23 Nov 2021 in cs.SI and cs.AI

Abstract: How to evaluate the importance of nodes is essential in research of complex network. There are many methods proposed for solving this problem, but they still have room to be improved. In this paper, a new approach called local volume information dimension is proposed. In this method, the sum of degree of nodes within different distances of central node is calculated. The information within the certain distance is described by the information entropy. Compared to other methods, the proposed method considers the information of the nodes from different distances more comprehensively. For the purpose of showing the effectiveness of the proposed method, experiments on real-world networks are implemented. Promising results indicate the effectiveness of the proposed method.

Summary

We haven't generated a summary for this paper yet.