Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the transition monoid of the Stallings automaton of a subgroup of a free group (2111.13561v2)

Published 26 Nov 2021 in math.GR and cs.FL

Abstract: Birget, Margolis, Meakin and Weil proved that a finitely generated subgroup $K$ of a free group is pure if and only if the transition monoid $M(K)$ of its Stallings automaton is aperiodic. In this paper, we establish further connections between algebraic properties of $K$ and algebraic properties of $M(K)$. We mainly focus on the cases where $M(K)$ belongs to the pseudovariety $\overline{\boldsymbol{\mathbf{{H}}}}$ of finite monoids all of whose subgroups lie in a given pseudovariety $\overline{\boldsymbol{\mathbf{{H}}}}$ of finite groups. We also discuss normal, malnormal and cyclonormal subgroups of $F_A$ using the transition monoid of the corresponding Stallings automaton.

Summary

We haven't generated a summary for this paper yet.