Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Ideals of $L^1$-algebras of Compact Quantum Groups (2111.13247v2)

Published 25 Nov 2021 in math.OA, math.FA, and math.QA

Abstract: We develop a notion of a non-commutative hull for a left ideal of the $L1$-algebra of a compact quantum group $\mathbb{G}$. A notion of non-commutative spectral synthesis for compact quantum groups is proposed as well. It is shown that a certain Ditkin's property at infinity (which includes those $\mathbb{G}$ where the dual quantum group $\widehat{\mathbb{G}}$ has the approximation property) is equivalent to every hull having synthesis. We use this work to extend recent work of White that characterizes the weak$*$ closed ideals of a measure algebra of a compact group to those of the measure algebra of a coamenable compact quantum group. In the sequel, we use this work to study bounded right approximate identities of certain left ideals of $L1(\mathbb{G})$ in relation to coamenability of $\mathbb{G}$.

Summary

We haven't generated a summary for this paper yet.