Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantum Motif Clustering (2111.13222v2)

Published 25 Nov 2021 in quant-ph and cs.DS

Abstract: We present three quantum algorithms for clustering graphs based on higher-order patterns, known as motif clustering. One uses a straightforward application of Grover search, the other two make use of quantum approximate counting, and all of them obtain square-root like speedups over the fastest classical algorithms in various settings. In order to use approximate counting in the context of clustering, we show that for general weighted graphs the performance of spectral clustering is mostly left unchanged by the presence of constant (relative) errors on the edge weights. Finally, we extend the original analysis of motif clustering in order to better understand the role of multiple `anchor nodes' in motifs and the types of relationships that this method of clustering can and cannot capture.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (37)
  1. Quantum speedup for graph sparsification, cut approximation and Laplacian solving. In 2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS), pages 637–648. IEEE, 2020. arXiv:1911.07306. doi:https://doi.org/10.1109/FOCS46700.2020.00065.
  2. Diameter of the world-wide web. Nature, 401(6749):130--131, 1999. doi:https://doi.org/10.1038/43601.
  3. Reka Albert. Scale-free networks in cell biology. Journal of cell science, 118(21):4947--4957, 2005. doi:https://doi.org/10.1242/jcs.02714.
  4. Systemic risk and stability in financial networks. American Economic Review, 105(2):564--608, 2015. doi:https://doi.org/10.1257/aer.20130456.
  5. Scale-free networks. Scientific American, 288(5):60--69, 2003. doi:https://doi.org/10.1126/science.1173299.
  6. Tight bounds on quantum searching. Fortschritte der Physik: Progress of Physics, 46(4-5):493--505, 1998. arXiv:quant-ph/9605034. doi:https://doi.org/10.1002/(SICI)1521-3978(199806)46:4/5<493::AID-PROP493>3.0.CO;2-P.
  7. Generating simple random graphs with prescribed degree distribution. Journal of statistical physics, 124(6):1377--1397, 2006. doi:https://doi.org/10.1007/s10955-006-9168-x.
  8. Higher-order organization of complex networks. Science, 353(6295):163--166, July 2016. arXiv:1612.08447. doi:10.1126/science.aad9029.
  9. Quantum amplitude amplification and estimation. Contemporary Mathematics, 305:53--74, 2002. arXiv:quant-ph/0005055. doi:https://doi.org/10.1090/conm/305/05215.
  10. The phase transition in inhomogeneous random graphs. Random Structures & Algorithms, 31(1):3--122, 2007. doi:https://doi.org/10.1002/rsa.20168.
  11. Focus beyond quadratic speedups for error-corrected quantum advantage. PRX Quantum, 2(1):010103, 2021. arXiv:2011.04149. doi:https://doi.org/10.1103/PRXQuantum.2.010103.
  12. Class of correlated random networks with hidden variables. Physical Review E, 68(3):036112, 2003. doi:https://doi.org/10.1103/PhysRevE.68.036112.
  13. Network neuroscience. Nature neuroscience, 20(3):353--364, 2017. doi:https://doi.org/10.1038/nn.4502.
  14. The average distances in random graphs with given expected degrees. Proceedings of the National Academy of Sciences, 99(25):15879--15882, 2002. doi:https://doi.org/10.1073/pnas.252631999.
  15. Spectral properties of hypergraph Laplacian and approximation algorithms. Journal of the ACM (JACM), 65(3):1--48, 2018. arXiv:1605.01483. doi:https://doi.org/10.1145/3178123.
  16. Arboricity and subgraph listing algorithms. SIAM Journal on computing, 14(1):210--223, 1985. doi:https://doi.org/10.1137/0214017.
  17. On power-law relationships of the internet topology. In The Structure and Dynamics of Networks, pages 195--206. Princeton University Press, 2011. doi:https://doi.org/10.1145/316194.316229.
  18. Contagion in financial networks. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 466(2120):2401--2423, 2010. doi:https://doi.org/10.1098/rspa.2009.0410.
  19. Counting cliques and cycles in scale-free inhomogeneous random graphs. Journal of Statistical Physics, 175(1):161--184, 2019. arXiv:1812.04384. doi:https://doi.org/10.1007/s10955-019-02248-w.
  20. Faster spectral sparsification and numerical algorithms for SDD matrices. ACM Transactions on Algorithms (TALG), 12(2):1--16, 2015. arXiv:1209.5821. doi:https://doi.org/10.1145/2743021.
  21. Matthieu Latapy. Main-memory triangle computations for very large (sparse (power-law)) graphs. Theoretical computer science, 407(1-3):458--473, 2008. doi:https://doi.org/10.1016/j.tcs.2008.07.017.
  22. Benchmark graphs for testing community detection algorithms. Physical review E, 78(4):046110, 2008. arXiv:0805.4770. doi:https://doi.org/10.1103/PhysRevE.78.046110.
  23. Gipsi Lima-Mendez and Jacques van Helden. The powerful law of the power law and other myths in network biology. Molecular BioSystems, 5(12):1482--1493, 2009. doi:https://doi.org/10.1039/B908681A.
  24. Building blocks of biological networks: a review on major network motif discovery algorithms. IET systems biology, 6(5):164--174, 2012. arXiv:1804.06990. doi:https://doi.org/10.1049/iet-syb.2011.0011.
  25. Efficient counting of network motifs. In 2010 IEEE 30th International Conference on Distributed Computing Systems Workshops, pages 92--98. IEEE, 2010. doi:https://doi.org/10.1109/ICDCSW.2010.41.
  26. Nataša Pržulj. Biological network comparison using graphlet degree distribution. Bioinformatics, 23(2):e177--e183, 2007. doi:https://doi.org/10.1093/bioinformatics/btl301.
  27. Partitioning well-clustered graphs: Spectral clustering works! In Conference on Learning Theory, pages 1423--1455. PMLR, 2015. arXiv:1411.2021. doi:https://doi.org/10.1137/15M1047209.
  28. Motifs in brain networks. PLoS Biol, 2(11):e369, 2004. doi:https://doi.org/10.1371/journal.pbio.0020369.
  29. Network motifs in the transcriptional regulation network of Escherichia coli. Nature genetics, 31(1):64--68, 2002. doi:https://doi.org/10.1038/ng881.
  30. Spectral partitioning works: Planar graphs and finite element meshes. Linear Algebra and its Applications, 421(2-3):284--305, 2007. doi:https://doi.org/10.1109/SFCS.1996.548468.
  31. Nearly linear time algorithms for preconditioning and solving symmetric, diagonally dominant linear systems. SIAM Journal on Matrix Analysis and Applications, 35(3):835--885, 2014. arXiv:cs/0607105. doi:https://doi.org/10.1137/090771430.
  32. Steven H Strogatz. Exploring complex networks. Nature, 410(6825):268--276, 2001. doi:https://doi.org/10.1038/35065725.
  33. Hypergraph clustering based on pagerank. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pages 1970--1978, 2020. arXiv: 2006.08302. doi:https://doi.org/10.1145/3394486.3403248.
  34. Ulrike von Luxburg. A tutorial on spectral clustering. Statistics and computing, 17(4):395--416, 2007. doi:https://doi.org/10.1007/s11222-007-9033-z.
  35. Large-scale topological and dynamical properties of the Internet. Physical Review E, 65(6):066130, 2002. arXiv:cond-mat/0112400. doi:https://doi.org/10.1103/PhysRevE.65.066130.
  36. Social network analysis: Methods and applications. 1994. doi:https://doi.org/10.2307/3322457.
  37. Between min cut and graph bisection. In International Symposium on Mathematical Foundations of Computer Science, pages 744--750. Springer, 1993.
Citations (1)

Summary

We haven't generated a summary for this paper yet.