Stochastic approximate state conversion for entanglement and general quantum resource theories (2111.12646v3)
Abstract: Quantum resource theories provide a mathematically rigorous way of understanding the nature of various quantum resources. An important problem in any quantum resource theory is to determine how quantum states can be converted into each other within the physical constraints of the theory. The standard approach to this problem is to study approximate or probabilistic transformations. Very few results have been presented on the intermediate regime between probabilistic and approximate transformations. Here, we investigate this intermediate regime, providing limits on both, the fidelity and the probability of state transitions. We derive limitations on the transformations, which are valid in all quantum resource theories, by providing bounds on the maximal transformation fidelity for a given transformation probability. As an application, we show that these bounds imply an upper bound on the asymptotic rates for various classes of states under probabilistic transformations. We also show that the deterministic version of the single copy bounds can be applied for drawing limitations on the manipulation of quantum channels, which goes beyond the previously known bounds of channel manipulations. Furthermore, we completely solve the question of stochastic-approximate state conversion via local operations and classical communication in the following two cases: (i) Both initial and target states are pure bipartite entangled states of arbitrary dimensions. (ii) The target state is a two-qubit entangled state and the initial state is a pure bipartite state.
- E. Chitambar and G. Gour, Quantum resource theories, Rev. Mod. Phys. 91, 025001 (2019).
- M. Horodecki and J. Oppenheim, (Quantumness in the context of) Resource Theories, Int. J. Mod. Phys. B 27, 1345019 (2013).
- C. H. Bennett and S. J. Wiesner, Communication via one- and two-particle operators on einstein-podolsky-rosen states, Phys. Rev. Lett. 69, 2881 (1992).
- A. K. Ekert, Quantum cryptography based on bell’s theorem, Phys. Rev. Lett. 67, 661 (1991).
- M. Horodecki, P. Horodecki, and J. Oppenheim, Reversible transformations from pure to mixed states and the unique measure of information, Phys. Rev. A 67, 062104 (2003).
- T. Baumgratz, M. Cramer, and M. B. Plenio, Quantifying coherence, Phys. Rev. Lett. 113, 140401 (2014).
- A. Winter and D. Yang, Operational resource theory of coherence, Phys. Rev. Lett. 116, 120404 (2016).
- A. Streltsov, G. Adesso, and M. B. Plenio, Colloquium: Quantum coherence as a resource, Rev. Mod. Phys. 89, 041003 (2017).
- A. Hickey and G. Gour, Quantifying the imaginarity of quantum mechanics, J. Phys. A 51, 414009 (2018).
- T. V. Kondra, C. Datta, and A. Streltsov, Real quantum operations and state transformations, arXiv:2210.15820 (2022).
- G. Gour and R. W. Spekkens, The resource theory of quantum reference frames: manipulations and monotones, New. J. Phys. 10, 033023 (2008).
- G. Gour, I. Marvian, and R. W. Spekkens, Measuring the quality of a quantum reference frame: The relative entropy of frameness, Phys. Rev. A 80, 012307 (2009).
- R. Takagi and Q. Zhuang, Convex resource theory of non-gaussianity, Phys. Rev. A 97, 062337 (2018).
- M. A. Nielsen, Conditions for a class of entanglement transformations, Phys. Rev. Lett. 83, 436 (1999).
- G. Vidal, Optimal local preparation of an arbitrary mixed state of two qubits: Closed expression for the single-copy case, Phys. Rev. A 62, 062315 (2000a).
- G. Vidal, D. Jonathan, and M. A. Nielsen, Approximate transformations and robust manipulation of bipartite pure-state entanglement, Phys. Rev. A 62, 012304 (2000).
- G. Vidal, Entanglement of pure states for a single copy, Phys. Rev. Lett. 83, 1046 (1999).
- D. Jonathan and M. B. Plenio, Minimal conditions for local pure-state entanglement manipulation, Phys. Rev. Lett. 83, 1455 (1999).
- B. Regula, Probabilistic transformations of quantum resources (2021), arXiv:2109.04481 [quant-ph] .
- K. Fang and Z.-W. Liu, No-go theorems for quantum resource purification, Phys. Rev. Lett. 125, 060405 (2020).
- B. Regula and R. Takagi, Fundamental limitations on distillation of quantum channel resources, Nat. Commun. 12, 4411 (2021a).
- J. Eisert and M. M. Wilde, A smallest computable entanglement monotone (2022a).
- J. Eisert and M. M. Wilde, A smallest computable entanglement monotone, in 2022 IEEE International Symposium on Information Theory (ISIT) (2022) pp. 2439–2444.
- B. Desef and M. B. Plenio, Optimizing quantum codes with an application to the loss channel with partial erasure information, Quantum 6, 667 (2022).
- N. H. Nickerson, J. F. Fitzsimons, and S. C. Benjamin, Freely scalable quantum technologies using cells of 5-to-50 qubits with very lossy and noisy photonic links, Phys. Rev. X 4, 041041 (2014).
- Z. Zhao, J.-W. Pan, and M. S. Zhan, Practical scheme for entanglement concentration, Phys. Rev. A 64, 014301 (2001).
- T. Yamamoto, M. Koashi, and N. Imoto, Concentration and purification scheme for two partially entangled photon pairs, Phys. Rev. A 64, 012304 (2001).
- E. T. Campbell and S. C. Benjamin, Measurement-based entanglement under conditions of extreme photon loss, Phys. Rev. Lett. 101, 130502 (2008).
- S. D. Barrett and P. Kok, Efficient high-fidelity quantum computation using matter qubits and linear optics, Phys. Rev. A 71, 060310 (2005).
- R. F. Werner, Quantum states with einstein-podolsky-rosen correlations admitting a hidden-variable model, Phys. Rev. A 40, 4277 (1989).
- C. L. Liu and D. L. Zhou, Catalyst-assisted probabilistic coherence distillation for mixed states, Phys. Rev. A 101, 012313 (2020).
- S. Du, Z. Bai, and X. Qi, Coherence measures and optimal conversion for coherent states, Quantum Info. Comput. 15, 1307 (2015).
- S. Du, Z. Bai, and X. Qi, Erratum: To “coherence measures and optimal conversion for coherent states” [ quantum information and coputation, vol. 15(2015), 1307-1316], Quantum Info. Comput. 17, 503 (2017).
- G. Vidal, Entanglement monotones, Journal of Modern Optics 47, 355 (2000b).
- C. L. Liu and C. P. Sun, Approximate distillation of quantum coherence, Phys. Rev. Research 4, 023199 (2022).
- G. Vidal and R. Tarrach, Robustness of entanglement, Phys. Rev. A 59, 141 (1999).
- M. Steiner, Generalized robustness of entanglement, Phys. Rev. A 67, 054305 (2003).
- A. W. Harrow and M. A. Nielsen, Robustness of quantum gates in the presence of noise, Phys. Rev. A 68, 012308 (2003).
- A. Shimony, Degree of entanglement, Annals of the New York Academy of Sciences 755, 675 (1995).
- H. Barnum and N. Linden, Monotones and invariants for multi-particle quantum states, J. Phys. A: Math. Gen. 34, 6787 (2001).
- T.-C. Wei and P. M. Goldbart, Geometric measure of entanglement and applications to bipartite and multipartite quantum states, Phys. Rev. A 68, 042307 (2003).
- A. Streltsov, H. Kampermann, and D. Bruß, Linking a distance measure of entanglement to its convex roof, New Journal of Physics 12, 123004 (2010).
- R. Takagi and B. Regula, General resource theories in quantum mechanics and beyond: Operational characterization via discrimination tasks, Phys. Rev. X 9, 031053 (2019a).
- N. Datta, Max- relative entropy of entanglement, alias log robustness, International Journal of Quantum Information 7, 475 (2009).
- S. Khatri and M. M. Wilde, Principles of quantum communication theory: A modern approach (2020).
- B. Regula, Convex geometry of quantum resource quantification, Journal of Physics A: Mathematical and Theoretical 51, 045303 (2017).
- D. Cavalcanti, Connecting the generalized robustness and the geometric measure of entanglement, Phys. Rev. A 73, 044302 (2006).
- F. G. S. L. Brandão and G. Gour, Reversible framework for quantum resource theories, Phys. Rev. Lett. 115, 070503 (2015).
- B. Regula and L. Lami, Reversibility of quantum resources through probabilistic protocols (2024), arXiv:2309.07206 [quant-ph] .
- D. Rosset, D. Schmid, and F. Buscemi, Type-independent characterization of spacelike separated resources, Phys. Rev. Lett. 125, 210402 (2020).
- H. Zhu, M. Hayashi, and L. Chen, Coherence and entanglement measures based on Rényi relative entropies, J. Phys. A: Math. Theor. 50, 475303 (2017).
- R. Rubboli, R. Takagi, and M. Tomamichel, Mixed-state additivity properties of magic monotones based on quantum relative entropies for single-qubit states and beyond (2023), arXiv:2307.08258 [quant-ph] .
- R. Rubboli and M. Tomamichel, New additivity properties of the relative entropy of entanglement and its generalizations (2022).
- B. Regula, L. Lami, and M. M. Wilde, Overcoming entropic limitations on asymptotic state transformations through probabilistic protocols, Phys. Rev. A 107, 042401 (2023).
- W. K. Wootters, Entanglement of formation of an arbitrary state of two qubits, Phys. Rev. Lett. 80, 2245 (1998).
- B. Regula and R. Takagi, One-shot manipulation of dynamical quantum resources, Phys. Rev. Lett. 127, 060402 (2021b).
- J. Barrett and S. Pironio, Popescu-rohrlich correlations as a unit of nonlocality, Phys. Rev. Lett. 95, 140401 (2005).
- M. M. Wilde, Quantum Information Theory, 2nd ed. (Cambridge University Press, 2017).
- G. Chiribella, G. M. D'Ariano, and P. Perinotti, Transforming quantum operations: Quantum supermaps, EPL (Europhysics Letters) 83, 30004 (2008).
- H. Yuan and C.-H. F. Fung, Fidelity and fisher information on quantum channels, New Journal of Physics 19, 113039 (2017).
- R. Takagi and B. Regula, General resource theories in quantum mechanics and beyond: Operational characterization via discrimination tasks, Phys. Rev. X 9, 031053 (2019b).
- F. Verstraete and H. Verschelde, Optimal teleportation with a mixed state of two qubits, Phys. Rev. Lett. 90, 097901 (2003).
- M. Horodecki, J. Oppenheim, and C. Sparaciari, Extremal distributions under approximate majorization, Journal of Physics A: Mathematical and Theoretical 51, 305301 (2018).
- S. Popescu and D. Rohrlich, Quantum nonlocality as an axiom, Foundations of Physics 24, 379 (1994).