Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A global quadratic speed-up for computing the principal eigenvalue of Perron-like operators (2111.12642v1)

Published 24 Nov 2021 in math.NA, cs.NA, and math.AP

Abstract: We consider a new algorithm in light of the min-max Collatz-Wielandt formalism to compute the principal eigenvalue and the eigenvector (eigen-function) for a class of positive Perron-Frobenius-like operators. Such operators are natural generalizations of the usual nonnegative primitive matrices. These have nontrivial applications in PDE problems such as computing the principal eigenvalue of Dirichlet Laplacian operators on general domains. We rigorously prove that for general initial data the corresponding numerical iterates converge globally to the unique principal eigenvalue with quadratic convergence. We show that the quadratic convergence is sharp with compatible upper and lower bounds. We demonstrate the effectiveness of the scheme via several illustrative numerical examples.

Summary

We haven't generated a summary for this paper yet.