Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Heat kernel bounds and Ricci curvature for Lipschitz manifolds (2111.12607v1)

Published 24 Nov 2021 in math.DG, math.AP, and math.PR

Abstract: Given any $d$-dimensional Lipschitz Riemannian manifold $(M,g)$ with heat kernel $\mathsf{p}$, we establish uniform upper bounds on $\mathsf{p}$ which can always be decoupled in space and time. More precisely, we prove the existence of a constant $C>0$ and a bounded Lipschitz function $R\colon M \to (0,\infty)$ such that for every $x\in M$ and every $t>0$, \begin{align*} \sup_{y\in M} \mathsf{p}(t,x,y) \leq C\min{t, R2(x)}{-d/2}. \end{align*} This allows us to identify suitable weighted Lebesgue spaces w.r.t. the given volume measure as subsets of the Kato class induced by $(M,g)$. In the case $\partial M \neq \emptyset$, we also provide an analogous inclusion for Lebesgue spaces w.r.t. the surface measure on $\partial M$. We use these insights to give sufficient conditions for a possibly noncomplete Lipschitz Riemannian manifold to be tamed, i.e. to admit a measure-valued lower bound on the Ricci curvature, formulated in a synthetic sense.

Summary

We haven't generated a summary for this paper yet.