Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Strong Invariance Principles for Ergodic Markov Processes (2111.12603v2)

Published 24 Nov 2021 in math.ST, math.PR, stat.CO, and stat.TH

Abstract: Strong invariance principles describe the error term of a Brownian approximation of the partial sums of a stochastic process. While these strong approximation results have many applications, the results for continuous-time settings have been limited. In this paper, we obtain strong invariance principles for a broad class of ergodic Markov processes. Strong invariance principles provide a unified framework for analysing commonly used estimators of the asymptotic variance in settings with a dependence structure. We demonstrate how this can be used to analyse the batch means method for simulation output of Piecewise Deterministic Monte Carlo samplers. We also derive a fluctuation result for additive functionals of ergodic diffusions using our strong approximation results.

Summary

We haven't generated a summary for this paper yet.