Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Combinatorial Optimization Problems with Balanced Regret (2111.12470v1)

Published 24 Nov 2021 in math.OC, cs.DM, and cs.DS

Abstract: For decision making under uncertainty, min-max regret has been established as a popular methodology to find robust solutions. In this approach, we compare the performance of our solution against the best possible performance had we known the true scenario in advance. We introduce a generalization of this setting which allows us to compare against solutions that are also affected by uncertainty, which we call balanced regret. Using budgeted uncertainty sets, this allows for a wider range of possible alternatives the decision maker may choose from. We analyze this approach for general combinatorial problems, providing an iterative solution method and insights into solution properties. We then consider a type of selection problem in more detail and show that, while the classic regret setting with budgeted uncertainty sets can be solved in polynomial time, the balanced regret problem becomes NP-hard. In computational experiments using random and real-world data, we show that balanced regret solutions provide a useful trade-off for the performance in classic performance measures.

Citations (2)

Summary

We haven't generated a summary for this paper yet.