Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient and Optimal Algorithms for Contextual Dueling Bandits under Realizability (2111.12306v1)

Published 24 Nov 2021 in cs.LG

Abstract: We study the $K$-armed contextual dueling bandit problem, a sequential decision making setting in which the learner uses contextual information to make two decisions, but only observes \emph{preference-based feedback} suggesting that one decision was better than the other. We focus on the regret minimization problem under realizability, where the feedback is generated by a pairwise preference matrix that is well-specified by a given function class $\mathcal F$. We provide a new algorithm that achieves the optimal regret rate for a new notion of best response regret, which is a strictly stronger performance measure than those considered in prior works. The algorithm is also computationally efficient, running in polynomial time assuming access to an online oracle for square loss regression over $\mathcal F$. This resolves an open problem of Dud\'ik et al. [2015] on oracle efficient, regret-optimal algorithms for contextual dueling bandits.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Aadirupa Saha (39 papers)
  2. Akshay Krishnamurthy (92 papers)
Citations (33)