Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Extending binary linear codes to self-orthogonal codes (2111.12282v2)

Published 24 Nov 2021 in cs.IT and math.IT

Abstract: Kim et al. (2021) gave a method to embed a given binary $[n,k]$ code $\mathcal{C}$ $(k = 3, 4)$ into a self-orthogonal code of the shortest length which has the same dimension $k$ and minimum distance $d' \ge d(\mathcal{C})$. We extend this result by proposing a new method related to a special matrix, called the self-orthogonality matrix $SO_k$, obtained by shortening a Reed-Muller code $\mathcal R(2,k)$. Using this approach, we can extend binary linear codes to many optimal self-orthogonal codes of dimensions $5$ and $6$. Furthermore, we partially disprove the conjecture (Kim et al. (2021)) by showing that if $31 \le n \le 256$ and $n\equiv 14,22,29 \pmod{31}$, then there exist optimal $[n,5]$ codes which are self-orthogonal. We also construct optimal self-orthogonal $[n,6]$ codes when $41 \le n \le 256$ satisfies $n \ne 46, 54, 61$ and $n \not\equiv 7, 14, 22, 29, 38, 45, 53, 60 \pmod{63}$.

Summary

We haven't generated a summary for this paper yet.