Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Is Dynamic Rumor Detection on social media Viable? An Unsupervised Perspective (2111.11982v1)

Published 23 Nov 2021 in cs.SI and cs.AI

Abstract: With the growing popularity and ease of access to the internet, the problem of online rumors is escalating. People are relying on social media to gain information readily but fall prey to false information. There is a lack of credibility assessment techniques for online posts to identify rumors as soon as they arrive. Existing studies have formulated several mechanisms to combat online rumors by developing machine learning and deep learning algorithms. The literature so far provides supervised frameworks for rumor classification that rely on huge training datasets. However, in the online scenario where supervised learning is exigent, dynamic rumor identification becomes difficult. Early detection of online rumors is a challenging task, and studies relating to them are relatively few. It is the need of the hour to identify rumors as soon as they appear online. This work proposes a novel framework for unsupervised rumor detection that relies on an online post's content and social features using state-of-the-art clustering techniques. The proposed architecture outperforms several existing baselines and performs better than several supervised techniques. The proposed method, being lightweight, simple, and robust, offers the suitability of being adopted as a tool for online rumor identification.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Chahat Raj (11 papers)
  2. Priyanka Meel (5 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.