Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

No Free Lunch: Balancing Learning and Exploitation at the Network Edge (2111.11912v1)

Published 23 Nov 2021 in cs.NI

Abstract: Over the last few years, the DRL paradigm has been widely adopted for 5G and beyond network optimization because of its extreme adaptability to many different scenarios. However, collecting and processing learning data entail a significant cost in terms of communication and computational resources, which is often disregarded in the networking literature. In this work, we analyze the cost of learning in a resource-constrained system, defining an optimization problem in which training a DRL agent makes it possible to improve the resource allocation strategy but also reduces the number of available resources. Our simulation results show that the cost of learning can be critical when evaluating DRL schemes on the network edge and that assuming a cost-free learning model can lead to significantly overestimating performance.

Citations (3)

Summary

We haven't generated a summary for this paper yet.