Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Dynamic Preference Structure Embedding From Temporal Networks (2111.11886v1)

Published 23 Nov 2021 in cs.IR

Abstract: The dynamics of temporal networks lie in the continuous interactions between nodes, which exhibit the dynamic node preferences with time elapsing. The challenges of mining temporal networks are thus two-fold: the dynamic structure of networks and the dynamic node preferences. In this paper, we investigate the dynamic graph sampling problem, aiming to capture the preference structure of nodes dynamically in cooperation with GNNs. Our proposed Dynamic Preference Structure (DPS) framework consists of two stages: structure sampling and graph fusion. In the first stage, two parameterized samplers are designed to learn the preference structure adaptively with network reconstruction tasks. In the second stage, an additional attention layer is designed to fuse two sampled temporal subgraphs of a node, generating temporal node embeddings for downstream tasks. Experimental results on many real-life temporal networks show that our DPS outperforms several state-of-the-art methods substantially owing to learning an adaptive preference structure. The code will be released soon at https://github.com/doujiang-zheng/Dynamic-Preference-Structure.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com