2000 character limit reached
An identity for $(-q^{5};\,q^{10})_{\infty}$ (2111.11857v1)
Published 21 Nov 2021 in math.GM
Abstract: We prove that $$ \prod_{n=0}{\infty}(1+q{10n+5}) = \frac{\sum_{n=-\infty}{\infty}q{n{2}}\, \sum_{n=-\infty}{\infty}(-1){n}\, (-q){n(3n-1)/2}}{4\, \sum_{n\geq 0}(-q){\frac{n(n+1)}{2}}\sin \left{\frac{(2n+1)3\pi}{10}\right}\, \sum_{n\geq 0}(-q){\frac{n(n+1)}{2}}\sin \left{\frac{(2n+1)\pi}{10}\right}} \qquad |q|<1 $$ using identities due to Ramanujan.