Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

RepoMiner: a Language-agnostic Python Framework to Mine Software Repositories for Defect Prediction (2111.11807v1)

Published 23 Nov 2021 in cs.SE

Abstract: Data originating from open-source software projects provide valuable information to enhance software quality. In the scope of Software Defect Prediction, one of the most challenging parts is extracting valid data about failure-prone software components from these repositories, which can help develop more robust software. In particular, collecting data, calculating metrics, and synthesizing results from these repositories is a tedious and error-prone task, which often requires understanding the programming languages involved in the mined repositories, eventually leading to a proliferation of language-specific data-mining software. This paper presents RepoMiner, a language-agnostic tool developed to support software engineering researchers in creating datasets to support any study on defect prediction. RepoMiner automatically collects failure data from software components, labels them as failure-prone or neutral, and calculates metrics to be used as ground truth for defect prediction models. We present its implementation and provide examples of its application.

Citations (2)

Summary

We haven't generated a summary for this paper yet.