Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generative Adversarial Networks for Astronomical Images Generation (2111.11578v1)

Published 22 Nov 2021 in cs.CV and eess.IV

Abstract: Space exploration has always been a source of inspiration for humankind, and thanks to modern telescopes, it is now possible to observe celestial bodies far away from us. With a growing number of real and imaginary images of space available on the web and exploiting modern deep Learning architectures such as Generative Adversarial Networks, it is now possible to generate new representations of space. In this research, using a Lightweight GAN, a dataset of images obtained from the web, and the Galaxy Zoo Dataset, we have generated thousands of new images of celestial bodies, galaxies, and finally, by combining them, a wide view of the universe. The code for reproducing our results is publicly available at https://github.com/davide-coccomini/GAN-Universe, and the generated images can be explored at https://davide-coccomini.github.io/GAN-Universe/.

Citations (2)

Summary

We haven't generated a summary for this paper yet.