Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improved Model based Deep Learning using Monotone Operator Learning (MOL) (2111.11380v1)

Published 22 Nov 2021 in cs.LG and eess.IV

Abstract: Model-based deep learning (MoDL) algorithms that rely on unrolling are emerging as powerful tools for image recovery. In this work, we introduce a novel monotone operator learning framework to overcome some of the challenges associated with current unrolled frameworks, including high memory cost, lack of guarantees on robustness to perturbations, and low interpretability. Unlike current unrolled architectures that use finite number of iterations, we use the deep equilibrium (DEQ) framework to iterate the algorithm to convergence and to evaluate the gradient of the convolutional neural network blocks using Jacobian iterations. This approach significantly reduces the memory demand, facilitating the extension of MoDL algorithms to high dimensional problems. We constrain the CNN to be a monotone operator, which allows us to introduce algorithms with guaranteed convergence properties and robustness guarantees. We demonstrate the utility of the proposed scheme in the context of parallel MRI.

Citations (7)

Summary

We haven't generated a summary for this paper yet.