Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

FedCV: A Federated Learning Framework for Diverse Computer Vision Tasks (2111.11066v1)

Published 22 Nov 2021 in cs.CV, cs.AI, and cs.LG

Abstract: Federated Learning (FL) is a distributed learning paradigm that can learn a global or personalized model from decentralized datasets on edge devices. However, in the computer vision domain, model performance in FL is far behind centralized training due to the lack of exploration in diverse tasks with a unified FL framework. FL has rarely been demonstrated effectively in advanced computer vision tasks such as object detection and image segmentation. To bridge the gap and facilitate the development of FL for computer vision tasks, in this work, we propose a federated learning library and benchmarking framework, named FedCV, to evaluate FL on the three most representative computer vision tasks: image classification, image segmentation, and object detection. We provide non-I.I.D. benchmarking datasets, models, and various reference FL algorithms. Our benchmark study suggests that there are multiple challenges that deserve future exploration: centralized training tricks may not be directly applied to FL; the non-I.I.D. dataset actually downgrades the model accuracy to some degree in different tasks; improving the system efficiency of federated training is challenging given the huge number of parameters and the per-client memory cost. We believe that such a library and benchmark, along with comparable evaluation settings, is necessary to make meaningful progress in FL on computer vision tasks. FedCV is publicly available: https://github.com/FedML-AI/FedCV.

Citations (60)

Summary

We haven't generated a summary for this paper yet.