Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Comparing the Accuracy of Deep Neural Networks (DNN) and Convolutional Neural Network (CNN) in Music Genre Recognition (MGR): Experiments on Kurdish Music (2111.11063v1)

Published 22 Nov 2021 in cs.SD, cs.LG, and eess.AS

Abstract: Musicologists use various labels to classify similar music styles under a shared title. But, non-specialists may categorize music differently. That could be through finding patterns in harmony, instruments, and form of the music. People usually identify a music genre solely by listening, but now computers and AI can automate this process. The work on applying AI in the classification of types of music has been growing recently, but there is no evidence of such research on the Kurdish music genres. In this research, we developed a dataset that contains 880 samples from eight different Kurdish music genres. We evaluated two machine learning approaches, a Deep Neural Network (DNN) and a Convolutional Neural Network (CNN), to recognize the genres. The results showed that the CNN model outperformed the DNN by achieving 92% versus 90% accuracy.

Citations (4)

Summary

We haven't generated a summary for this paper yet.