Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

End-to-end Learning for Fair Ranking Systems (2111.10723v1)

Published 21 Nov 2021 in cs.LG and cs.AI

Abstract: The learning-to-rank problem aims at ranking items to maximize exposure of those most relevant to a user query. A desirable property of such ranking systems is to guarantee some notion of fairness among specified item groups. While fairness has recently been considered in the context of learning-to-rank systems, current methods cannot provide guarantees on the fairness of the proposed ranking policies. This paper addresses this gap and introduces Smart Predict and Optimize for Fair Ranking (SPOFR), an integrated optimization and learning framework for fairness-constrained learning to rank. The end-to-end SPOFR framework includes a constrained optimization sub-model and produces ranking policies that are guaranteed to satisfy fairness constraints while allowing for fine control of the fairness-utility tradeoff. SPOFR is shown to significantly improve current state-of-the-art fair learning-to-rank systems with respect to established performance metrics.

Citations (17)

Summary

We haven't generated a summary for this paper yet.