Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimized Inference in Regression Kink Designs (2111.10713v1)

Published 21 Nov 2021 in econ.EM

Abstract: We propose a method to remedy finite sample coverage problems and improve upon the efficiency of commonly employed procedures for the construction of nonparametric confidence intervals in regression kink designs. The proposed interval is centered at the half-length optimal, numerically obtained linear minimax estimator over distributions with Lipschitz constrained conditional mean function. Its construction ensures excellent finite sample coverage and length properties which are demonstrated in a simulation study and an empirical illustration. Given the Lipschitz constant that governs how much curvature one plausibly allows for, the procedure is fully data driven, computationally inexpensive, incorporates shape constraints and is valid irrespective of the distribution of the assignment variable.

Summary

We haven't generated a summary for this paper yet.