Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Toward Compact Parameter Representations for Architecture-Agnostic Neural Network Compression (2111.10320v1)

Published 19 Nov 2021 in cs.CV and cs.LG

Abstract: This paper investigates deep neural network (DNN) compression from the perspective of compactly representing and storing trained parameters. We explore the previously overlooked opportunity of cross-layer architecture-agnostic representation sharing for DNN parameters. To do this, we decouple feedforward parameters from DNN architectures and leverage additive quantization, an extreme lossy compression method invented for image descriptors, to compactly represent the parameters. The representations are then finetuned on task objectives to improve task accuracy. We conduct extensive experiments on MobileNet-v2, VGG-11, ResNet-50, Feature Pyramid Networks, and pruned DNNs trained for classification, detection, and segmentation tasks. The conceptually simple scheme consistently outperforms iterative unstructured pruning. Applied to ResNet-50 with 76.1% top-1 accuracy on the ILSVRC12 classification challenge, it achieves a $7.2\times$ compression ratio with no accuracy loss and a $15.3\times$ compression ratio at 74.79% accuracy. Further analyses suggest that representation sharing can frequently happen across network layers and that learning shared representations for an entire DNN can achieve better accuracy at the same compression ratio than compressing the model as multiple separate parts. We release PyTorch code to facilitate DNN deployment on resource-constrained devices and spur future research on efficient representations and storage of DNN parameters.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Yuezhou Sun (2 papers)
  2. Wenlong Zhao (18 papers)
  3. Lijun Zhang (239 papers)
  4. Xiao Liu (402 papers)
  5. Hui Guan (33 papers)
  6. Matei Zaharia (101 papers)