Learning in High-Dimensional Feature Spaces Using ANOVA-Based Fast Matrix-Vector Multiplication (2111.10140v2)
Abstract: Kernel matrices are crucial in many learning tasks such as support vector machines or kernel ridge regression. The kernel matrix is typically dense and large-scale. Depending on the dimension of the feature space even the computation of all of its entries in reasonable time becomes a challenging task. For such dense matrices the cost of a matrix-vector product scales quadratically with the dimensionality N , if no customized methods are applied. We propose the use of an ANOVA kernel, where we construct several kernels based on lower-dimensional feature spaces for which we provide fast algorithms realizing the matrix-vector products. We employ the non-equispaced fast Fourier transform (NFFT), which is of linear complexity for fixed accuracy. Based on a feature grouping approach, we then show how the fast matrix-vector products can be embedded into a learning method choosing kernel ridge regression and the conjugate gradient solver. We illustrate the performance of our approach on several data sets.
- Franziska Nestler (5 papers)
- Martin Stoll (56 papers)
- Theresa Wagner (4 papers)