Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Download Rate of Homomorphic Secret Sharing (2111.10126v2)

Published 19 Nov 2021 in cs.IT, cs.CR, and math.IT

Abstract: A homomorphic secret sharing (HSS) scheme is a secret sharing scheme that supports evaluating functions on shared secrets by means of a local mapping from input shares to output shares. We initiate the study of the download rate of HSS, namely, the achievable ratio between the length of the output shares and the output length when amortized over $\ell$ function evaluations. We obtain the following results. * In the case of linear information-theoretic HSS schemes for degree-$d$ multivariate polynomials, we characterize the optimal download rate in terms of the optimal minimal distance of a linear code with related parameters. We further show that for sufficiently large $\ell$ (polynomial in all problem parameters), the optimal rate can be realized using Shamir's scheme, even with secrets over $\mathbb{F}_2$. * We present a general rate-amplification technique for HSS that improves the download rate at the cost of requiring more shares. As a corollary, we get high-rate variants of computationally secure HSS schemes and efficient private information retrieval protocols from the literature. * We show that, in some cases, one can beat the best download rate of linear HSS by allowing nonlinear output reconstruction and $2{-\Omega(\ell)}$ error probability.

Citations (9)

Summary

We haven't generated a summary for this paper yet.