Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Semi-supervised transfer learning for language expansion of end-to-end speech recognition models to low-resource languages (2111.10047v1)

Published 19 Nov 2021 in eess.AS, cs.CL, and cs.SD

Abstract: In this paper, we propose a three-stage training methodology to improve the speech recognition accuracy of low-resource languages. We explore and propose an effective combination of techniques such as transfer learning, encoder freezing, data augmentation using Text-To-Speech (TTS), and Semi-Supervised Learning (SSL). To improve the accuracy of a low-resource Italian ASR, we leverage a well-trained English model, unlabeled text corpus, and unlabeled audio corpus using transfer learning, TTS augmentation, and SSL respectively. In the first stage, we use transfer learning from a well-trained English model. This primarily helps in learning the acoustic information from a resource-rich language. This stage achieves around 24% relative Word Error Rate (WER) reduction over the baseline. In stage two, We utilize unlabeled text data via TTS data-augmentation to incorporate language information into the model. We also explore freezing the acoustic encoder at this stage. TTS data augmentation helps us further reduce the WER by ~ 21% relatively. Finally, In stage three we reduce the WER by another 4% relative by using SSL from unlabeled audio data. Overall, our two-pass speech recognition system with a Monotonic Chunkwise Attention (MoChA) in the first pass and a full-attention in the second pass achieves a WER reduction of ~ 42% relative to the baseline.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Jiyeon Kim (22 papers)
  2. Mehul Kumar (7 papers)
  3. Dhananjaya Gowda (16 papers)
  4. Abhinav Garg (11 papers)
  5. Chanwoo Kim (68 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.