Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Consistent Quasi-Second Order Staggered Scheme for the Two-Dimensional Shallow Water Equations (2111.09726v1)

Published 18 Nov 2021 in math.NA and cs.NA

Abstract: A quasi-second order scheme is developed to obtain approximate solutions of the shallow water equationswith bathymetry. The scheme is based on a staggered finite volume scheme for the space discretization:the scalar unknowns are located in the discretisation cells while the vector unknowns are located on theedges (in 2D) or faces (in 3D) of the mesh. A MUSCL-like interpolation for the discrete convectionoperators in the water height and momentum equations is performed in order to improve the precisionof the scheme. The time discretization is performed either by a first order segregated forward Eulerscheme in time or by the second order Heun scheme. Both schemes are shown to preserve the waterheight positivity under a CFL condition and an important state equilibrium known as the lake at rest.Using some recent Lax-Wendroff type results for staggered grids, these schemes are shown to be Lax-consistent with the weak formulation of the continuous equations; besides, the forward Euler schemeis shown to be consistent with a weak entropy inequality. Numerical results confirm the efficiency andaccuracy of the schemes.

Citations (5)

Summary

We haven't generated a summary for this paper yet.