Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Differential Geometry of Some Classes of Infinite Dimensional Manifolds (2111.09646v4)

Published 18 Nov 2021 in math.DG

Abstract: Albeverio, Kondratiev, and R\"{o}ckner have introduced a type of differential geometry, which we call lifted geometry, for the configuration space $\Gamma_X$ of any manifold $X$. The name comes from the fact that various elements of the geometry of $\Gamma_X$ are constructed via lifting of the corresponding elements of the geometry of $X$. In this note, we construct a general algebraic framework for lifted geometry which can be applied to various infinite dimensional spaces'' associated to $X$. In order to define a lifted geometry for aspace'', one dose not need any topology or local coordinate system on the space. As example and application, lifted geometry for spaces of Radon measures on $X$, mappings into $X$, embedded submanifolds of $X$, and tilings on $X$, are considered. The gradient operator in the lifted geometry of Radon measures is considered. Also, the construction of a natural Dirichlet form associated to a Random measure is discussed. It is shown that Stokes' Theorem appears as differentiability'' ofboundary operator'' in the lifted geometry of spaces of submanifolds. It is shown that (generalized) action functionals associated with Lagrangian densities on $X$ form the algebra of smooth functions in a specific lifted geometry for the path-space of $X$.

Summary

We haven't generated a summary for this paper yet.