Papers
Topics
Authors
Recent
Search
2000 character limit reached

Sentiment Analysis of Microblogging dataset on Coronavirus Pandemic

Published 17 Nov 2021 in cs.SI and cs.LG | (2111.09275v1)

Abstract: Sentiment analysis can largely influence the people to get the update of the current situation. Coronavirus (COVID-19) is a contagious illness caused by the coronavirus 2 that causes severe respiratory symptoms. The lives of millions have continued to be affected by this pandemic, several countries have resorted to a full lockdown. During this lockdown, people have taken social networks to express their emotions to find a way to calm themselves down. People are spreading their sentiments through microblogging websites as one of the most preventive steps of this disease is the socialization to gain people's awareness to stay home and keep their distance when they are outside home. Twitter is a popular online social media platform for exchanging ideas. People can post their different sentiments, which can be used to aware people. But, some people want to spread fake news to frighten the people. So, it is necessary to identify the positive, negative, and neutral thoughts so that the positive opinions can be delivered to the mass people for spreading awareness to the people. Moreover, a huge volume of data is floating on Twitter. So, it is also important to identify the context of the dataset. In this paper, we have analyzed the Twitter dataset for evaluating the sentiment using several machine learning algorithms. Later, we have found out the context learning of the dataset based on the sentiments.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.