Papers
Topics
Authors
Recent
Search
2000 character limit reached

Max-3-Lin over Non-Abelian Groups with Universal Factor Graphs

Published 17 Nov 2021 in cs.CC and math.RT | (2111.09256v1)

Abstract: Factor graph of an instance of a constraint satisfaction problem with n variables and m constraints is the bipartite graph between [m] and [n] describing which variable appears in which constraints. Thus, an instance of a CSP is completely defined by its factor graph and the list of predicates. We show inapproximability of Max-3-LIN over non-abelian groups (both in the perfect completeness case and in the imperfect completeness case), with the same inapproximability factor as in the general case, even when the factor graph is fixed. Along the way, we also show that these optimal hardness results hold even when we restrict the linear equations in the Max-3-LIN instances to the form x * y * z = g, where x, y, z are the variables and g is a group element. We use representation theory and Fourier analysis over non-abelian groups to analyze the reductions.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.