Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Max-3-Lin over Non-Abelian Groups with Universal Factor Graphs (2111.09256v1)

Published 17 Nov 2021 in cs.CC and math.RT

Abstract: Factor graph of an instance of a constraint satisfaction problem with n variables and m constraints is the bipartite graph between [m] and [n] describing which variable appears in which constraints. Thus, an instance of a CSP is completely defined by its factor graph and the list of predicates. We show inapproximability of Max-3-LIN over non-abelian groups (both in the perfect completeness case and in the imperfect completeness case), with the same inapproximability factor as in the general case, even when the factor graph is fixed. Along the way, we also show that these optimal hardness results hold even when we restrict the linear equations in the Max-3-LIN instances to the form x * y * z = g, where x, y, z are the variables and g is a group element. We use representation theory and Fourier analysis over non-abelian groups to analyze the reductions.

Citations (1)

Summary

We haven't generated a summary for this paper yet.