Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

IV-GNN : Interval Valued Data Handling Using Graph Neural Network (2111.09194v1)

Published 17 Nov 2021 in cs.LG and cs.AI

Abstract: Graph Neural Network (GNN) is a powerful tool to perform standard machine learning on graphs. To have a Euclidean representation of every node in the Non-Euclidean graph-like data, GNN follows neighbourhood aggregation and combination of information recursively along the edges of the graph. Despite having many GNN variants in the literature, no model can deal with graphs having nodes with interval-valued features. This article proposes an Interval-ValuedGraph Neural Network, a novel GNN model where, for the first time, we relax the restriction of the feature space being countable. Our model is much more general than existing models as any countable set is always a subset of the universal set $R{n}$, which is uncountable. Here, to deal with interval-valued feature vectors, we propose a new aggregation scheme of intervals and show its expressive power to capture different interval structures. We validate our theoretical findings about our model for graph classification tasks by comparing its performance with those of the state-of-the-art models on several benchmark network and synthetic datasets.

Summary

We haven't generated a summary for this paper yet.