Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Proof of some congruence conjectures of Z.-H. Sun involving Apéry-like numbers (2111.08778v2)

Published 16 Nov 2021 in math.NT and math.CO

Abstract: In this paper, we mainly prove the following conjecture of Z.-H. Sun cite{SH20}: Let $p>3$ be a prime. Then $$\sum_{k=0}{p-1}\binom{2k}k\frac{3k+1}{(-16)k}f_k\equiv(-1){(p-1)/2}p+p3E_{p-3}\pmod{p4},$$ where $f_n=\sum_{k=0}n\binom{n}k3$ and $E_n$ stand for the $n$th Franel number and $n$th Euler number respectively.

Summary

We haven't generated a summary for this paper yet.