2000 character limit reached
On two congruence conjectures of Z.-W. Sun involving Franel numbers (2111.08775v3)
Published 16 Nov 2021 in math.NT and math.CO
Abstract: In this paper, we mainly prove the following conjectures of Z.-W. Sun \cite{S13}: Let $p>2$ be a prime. If $p=x2+3y2$ with $x,y\in\mathbb{Z}$ and $x\equiv1\pmod 3$, then $$x\equiv\frac14\sum_{k=0}{p-1}(3k+4)\frac{f_k} {2k}\equiv\frac12\sum_{k=0}{p-1}(3k+2)\frac{f_k}{(-4)k}\pmod{p2},$$ and if $p\equiv1\pmod3$, then $$\sum_{k=0}{p-1}\frac{f_k}{2k}\equiv\sum_{k=0}{p-1}\frac{f_k}{(-4)k}\pmod{p3},$$ where $f_n=\sum_{k=0}n\binom{n}k3$ stands for the $n$th Franel number.