Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Entropy of irregular points that are not uniformly hyperbolic (2111.08325v1)

Published 16 Nov 2021 in math.DS

Abstract: In this article we prove that for a $C{1+\alpha}$ diffeomorphism on a compact Riemannian manifold, if there is a hyperbolic ergodic measure whose support is not uniformly hyperbolic, then the topological entropy of the set of irregular points that are not uniformly hyperbolic is larger than or equal to the metric entropy of the hyperbolic ergodic measure. In the process of proof, we give an abstract general mechanism to study topological entropy of irregular points provided that the system has a sequence of nondecreasing invariant compact subsets such that every subsystem has shadowing property and is transitive.

Summary

We haven't generated a summary for this paper yet.