Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Data Augmentation using Random Image Cropping for High-resolution Virtual Try-On (VITON-CROP) (2111.08270v1)

Published 16 Nov 2021 in cs.CV

Abstract: Image-based virtual try-on provides the capacity to transfer a clothing item onto a photo of a given person, which is usually accomplished by warping the item to a given human pose and adjusting the warped item to the person. However, the results of real-world synthetic images (e.g., selfies) from the previous method is not realistic because of the limitations which result in the neck being misrepresented and significant changes to the style of the garment. To address these challenges, we propose a novel method to solve this unique issue, called VITON-CROP. VITON-CROP synthesizes images more robustly when integrated with random crop augmentation compared to the existing state-of-the-art virtual try-on models. In the experiments, we demonstrate that VITON-CROP is superior to VITON-HD both qualitatively and quantitatively.

Citations (3)

Summary

We haven't generated a summary for this paper yet.